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Motivation for Subnational Estimation

3



Small Area Estimation

• For purposes of programming and interventions, and to monitor progress
toward targets such as the SDGs, subnational estimates of indicators of
interest are desirable.

• Many indicators of interest:

• Simple prevalence: NMR, vaccination coverage, stunting,...

• More complex variables: U5MR, fertility, maternal mortality.

• For many health and demographic indicators there exists considerable
within-country variation.

• The endeavor of small area estimation (SAE) is the task of estimating a
variable of interest within geographic areas, based on potentially sparse
data (this is the “small”).

• Notation for nested geographic hierarchy: Admin0 is national, Admin1 is
one below national, and Admin2 is two below national.
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Figure 1: Estimated NMR in 10 years preceding the 2018 DHS across 37 Admin1
(states) and 775 Admin2 areas (LGAs) in Nigeria.
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Small Area Estimation (SAE) in LMICs

• In LMICs, household surveys are often the most reliable data source.

• But not powered to produce weighted estimates at fine spatial scales.

• To overcome this data sparsity, SAE smoothing models in space (and
time) can be used:

• Area-level models: Relatively easy to implement and not too heavy on
assumptions – often work for Admin1 and sometimes Admin2.

• Unit-level models: Much trickier to implement as they must acknowledge the
design, and more assumptions leant on – but far more powerful.

• Rao and Molina (2015) is the classic text on SAE.

A key point is that models must acknowledge the survey design –
there are two fundamentally different approaches to analysis,

design-based inference and model-based inference
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Complex Survey Sampling
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The Complex Survey Design of the DHS

• The DHS uses:

Stratified two-stage unequal probability cluster sampling.

• Strata consist of urban/rural crossed by geographic administrative areas.

• In each strata, enumeration areas (EAs ) (also referred to as clusters)
are selected with probability proportional to size sampling (number of
households being the size variable) using a sampling frame developed
from the most recent census (this is the unequal probability sampling
part).

• In each of the clusters, households are selected.

• Within each household, women between the ages of 15 and 49 are
interviewed.

• Based on these steps we can calculate πik , the probability that individual
k in area i is selected into the study.
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Nigerian DHS Data

In the 2018 DHS:

• Sampling frame: 2006 with 664,999 census EAs (clusters); stratification:
urban/rural crossed with 37 states.

• 1389 sampled clusters.
• Approximately 42,000 households were selected in total, 30 from each EA.

Figure 2: Maps of Nigeria showing the 37 Admin1 areas (left), and the 775 Admin2
areas (right). The crosses show the locations of the 1389 sampled clusters.

• The 2021 Nigerian MICS has the same design.
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Nigeria 2021 DHS: Abundant Sampling at State Level

Figure 3: Cluster summary statistics, by state, from Nigeria 2018 DHS (NMR).
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Nigeria 2021 DHS: Sparse Sampling at LGA Level

Figure 4: Cluster summary statistics, by LGA, from Nigeria 2018 DHS (NMR).
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Weighted Estimation
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Weighted Estimates

• In area i , if Ni is the population size and Ti is the number of events, then
the prevalence is

pi =
Ti

Ni
.

• Let Yik = 0/1 again be the indicator for the event k in area i , with
wik = 1/πik being the design weight, that accounts for the (probabilistic)
sample selection; wik can be thought of as the number of people
represented by person k .

• For area i , the weighted estimator is

p̂ W
i =

T̂i

N̂i

=

∑
k∈Si

wik Yik∑
k∈Si

wik
. (1)

where Si is the set of sampled births.

• Known as a direct estimate since based on data from the area in
question only.
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The weighted mean is the direct
estimator that is the first choice for
producing subnational estimates
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Direct Estimates

Advantages:

• Estimates and uncertainty measures account for the design via weighting.

• Inference is based on minimal assumptions, since there is no explicit model for
the data.

• Often produces reasonable inference for Admin1 areas (unless outcome is very
rare). Sometimes OK for Admin2 also.

Disadvantages:

• When the data are sparse in an area, then the estimator will have uncertainty that
is high, or not possible to estimate (because the variance formula breaks down).

• If no data in an area, then no estimate available.
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Figure 5: Summaries of state level weighted estimates for Nigeria for NMR.

• Weighted estimates account for the complex design and are reliable for states.
• Range of estimates is large – between-area variation.
• But uncertainty in each estimate is needed for interpretation.
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Within-Area Estimation Variation of Prevalence

• Ridgeplots, as we use them in SAE,
show the complete range of
uncertainty for a collection of areas.

• We may examine, for example,

• All Admin1 areas stacked on top
of each other

• Admin2 areas within a particular
Admin1

• There may be many areas and
then we may just stack the “top”
and “bottom” areas, Figure 6
gives an example

• The ordering may be via the point
estimate.
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Figure 6: Ridgeplots for NMR across
states in Nigeria.
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Small Area Estimation (SAE): Area-Level Models
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Methods we Employ Offer Two SAE Models

Sufficient Data
at Desired

Admin Level?

Reliable
Estimation?
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Area-Level
(Fay-
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Area-Level (Fay-Herriot) Model

• The basic idea behind the area-level Fay-Herriot model, is to
simultaneously model the collection of weighted estimates

p̂ W
i =

T̂i

N̂i

=

∑
k∈Si

wik Yik∑
k∈Si

wik
. (2)

from all areas.

• These estimates, p̂ W
i , along with their standard errors,

√
V i , constitute

the data for i = 1, . . . , n.

• The intuition is that we would expect some similarity of prevalences in
areas that are “close” – this suggests we might benefit from using a
model that encourages spatial smoothness in the estimates.

• We are effectively increasing the sample size in each area, by leveraging
spatial similarity in prevalence.
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Neighborhood Scheme in Nigeria

• Neighbors are conventionally defined through sharing a common
boundary – this is a common choice but others are possible.

Figure 7: Neighborhood structure for 37 Admin1 states in Nigeria – this is used in the
spatial smoothing models. Black lines link neighbors.
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Area-Level (Fay-Herriot) Model

A wrinkle is that prevalences lie between 0 and 1, which makes modeling
more tricky, so we take the logit transform.

Let,

µi = log

(
pi

1 − pi

)
,

be the log odds of the observed prevalence, which is on the real line.

The response variable is taken as,

Yi = log

(
p̂ W

i

1 − p̂ W
i

)
, for i = 1, . . . , n, areas

The variance of these responses can be obtained from the variance of the
prevalences, using the delta method, denote these as V ⋆

i . So data is:

(Y1,
√

V
⋆

1), (Y2,
√

V
⋆

2), . . . , (Yn−1,
√

V
⋆

n−1), (Yn,
√

V
⋆

n)︸ ︷︷ ︸
AREAS ARE LINKED THROUGH NEIGHBORHOOD STRUCTURE
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Area-Level (Fay-Herriot) Model

In large samples,
Yi = µi︸︷︷︸

TRUTH

+ ϵi︸︷︷︸
SAMPLING ERROR

,

with

• ϵi following a N(0,V ⋆
i ) distribution,

• V ⋆
i estimated using formulas relevant to the survey design.

In the Fay-Herriot area-level spatial model, it is assumed that

µi︸︷︷︸
TRUTH

= α︸︷︷︸
OVERALL LEVEL

+ δi︸︷︷︸
SPATIAL RESIDUAL

The spatial terms δi are assumed to have spatial structure, i.e., they are
spatially linked, strength of smoothness is controlled with a tuning parameter
that is estimated from the data.

The spatial model we use corresponds to the celebrated BYM2 model
(Riebler et al., 2016), with the name based on the original Besag, York, Mollié
model (Besag et al., 1991). 23



Area-Level (Fay-Herriot) Model: Technical Version

The spatial residual is decomposed as:

δ =


δ1

...
δn

 = λ

√
ϕ


S1

...
Sn

+
√

1 − ϕ


E1

...
En




where

• Si is the spatial term and Ei ∼ N(0, 1) is the non-spatial term,

• Two parameters in the model: ϕ is the proportion of the variation that is
spatial and λ is the residual standard deviation – tells us how bumpy the
surface is and corresponds to the smoothing parameter.

• For the spatial terms:

Si | Sj , j ∈ ne(i) follow a N(S i , 1/mi) distribution,

where ne(i) is the set of neighbors of i , S i is the mean of the neighbors
and mi is the number of such neighbors – a local smoothing model. 24



Figure 8: Neighborhood structure for 5 Admin1 areas in Rwanda. Black lines link
neighbors.

• For example, the level for area 1 (note: numbering is arbitrary) is being
pulled towards the average of the levels in areas 2, 3, 4 (its neighbors):

E[S1|S2,S3,S4] =
1
3
(S2 + S3 + S4)

25



Area-Level (Fay-Herriot) Model

Advantages:

• Weighted estimates and uncertainty measures that feed into the hierarchical
model account for the design, which avoids potential bias due to (say) stratified
and PPS sampling, and accounts for the clustering.

• As the sample size in each area increases, the estimates tend to the true
prevalences, which is known as design consistency.

• By modeling all the data in unison, uncertainty in each area is reduced (on
average).

• Inference is Bayesian with implementation via integrated nested Laplace
approximation (INLA) (Rue et al., 2009) and is fast.

• Penalized complexoty (PC) priors (Simpson et al., 2017) are used for
hyperparameters.
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Area-Level (Fay-Herriot) Model

Disadvantages:

• The modeling is based on the weighted estimates and standard errors in each
area, so when the data are sparse and estimates are not available or unreliable,
the method cannot be used.

• When the data are sparse, the estimates may be overshrunk since the data are
not sufficiently informative to discriminate from the “flat” map case.

• The model produces shrinkage which can lead to interpretation being more tricky
(since bias is introduced in each estimate).

27



0.01

0.02

0.03

0.04

0.05

0.06

0.01 0.02 0.03 0.04 0.05 0.06
Direct estimates

A
re

a−
le

ve
l m

od
el

 e
st

im
at

es

10%

20%

30%

40%

10% 20% 30% 40%
Direct estimates

A
re

a−
le

ve
l m

od
el

 e
st

im
at

es

Figure 9: Area-level estimates versus direct estimates (left) and area-level CVs versus
direct CVs (right), for states.

• Some shrinkage (narrowing of range of estimates) of estimates at Admin1 (left).

• Gains in precision in all but one Admin1 area (right).
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Figure 10: Summary measures for direct estimates at Admin1.

• Relatively large range in point estimates.
• Uncertainty measure show large variation also, and for some areas, estimates are

quite imprecise. 29
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Figure 11: Summary measures for area-level (Fay-Herriot) estimates at Admin1.

• Compared to direct estimates (Figure 10) a narrower range in the point estimates.
• Uncertainty measure show less variation also, due to sharing of information.
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Figure 12: Direct prevalence and CV maps at Admin2.

• Direct estimates are not available in quite a few areas (since no data).

• CVs are available in very few, because even if data are available, some
configurations do not allow calculation of a variance, e.g., all responses zero.

• So unable to fit area-level models at Admin2 (LGA) level – unit-level models are
the only possibility.

• The shinyApp gives warnings.
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Small Area Estimation (SAE): Unit-Level Models
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Unit-Level Models

• When it is not possible to fit area-level models, we must turn to unit-level
models.

• These represent a conventional model-based (as opposed to
design-based) approach.

• We model individual responses at the cluster-level.

• The obvious model for a set of Bernoulli (0/1) responses in each cluster
is a binomial – we use an overdispersed version, namely the
betabinomial – it has an extra parameter to allow for extra-binomial
variation (dependent observations within each cluster imply this will be
present).

• An important point: While we would like estimates with high precision,
the first hurdle is getting a precision that is appropriate.
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Unit-Level Model

• As a concrete example, consider neonatal mortality risk.

• Suppose Yic deaths out of nic births in sampled cluster c.

• We use an overdispersed binomial model:

Yic |pic ∼ BetaBinomial(nic , pic , d), (3)

where
• pic is the risk of neonatal death in cluster c of area i .

• d > 0 is an overdispersion parameter that accounts for within-cluster
correlation. Parameterizaton: var(Yic) = nicpic(1 − pic)[1 + (nic − 1)d ].

• Model for cluster risk pic :

pic

1 − pic
= exp( α︸︷︷︸

OVERALL LEVEL

+ δi︸︷︷︸
SPATIAL RESIDUAL

)

• The δi again encourage spatial smoothing of risk, via the BYM2 model.
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Unit-Level Model

Advantages:

• If the data are sparse, this is the only possible method, since it can deal with
situations in which the responses are either all 0s or all 1s.

• By modeling all the data in unison, uncertainty in each area is reduced (on
average).
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Unit-Level Model

Disadvantages:

• Since the weights are not used, one must adjust for the design within the model
specification, for example, by modeling the association between prevalence and
urban/rural.

• Unit-level models do not provide design-consistent results in general – we are not
guaranteed to converge to the true prevalence as the within-area sample size
tends to the population size.

• This cluster effect is intended to account for within-cluster dependence in the
outcomes. May also pick up within-area variation (interpretation tricky).

• When the data are sparse, the estimates may be overshrunk since the data are
not sufficiently informative to discriminate from the “flat” map case.

• The model produces shrinkage which can lead to interpretation being more tricky
(since bias is introduced in each estimate).

• Is the unit-level variance too small? This is a very difficult question to answer.
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Figure 13: Direct, area-level and unit-level point estimates, at Admin1 and Admin2.

• At Admin1, all 3 methods give very similar results.
• At Admin2, there is more variation, with unit-level and area-level being similar and

displaying shrinkage. 37
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Figure 14: Direct, area-level and unit-level CVs, at Admin1 and Admin2.

• At both Admin1 and Admin2, there is an increase in precision in moving from
direct to area-level to unit-level.
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Ranking Plots

Figure 15: ANC4+ visits
from Nigeria DHS 2018.

Low prevalence areas
are mostly in the
north-west (Sokoto,
Kebbi, Zamfara) but
also Bayelsa in the
south.

Figure 16: State-level ranks for ANC4+.
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Software and Country Engagement
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Software Evolution

• We have been working on SUMMER package in R since 2017 – focusses
mostly on mortality estimation.

• Experience from UN and WHO workshops in 2019 in Ecuador, South
Africa, Malawi is that researchers need a more user-friendly interface.

• surveyPrev package in R allows SAE for binary indicators – introduced
in 2023.

• U5MR and fertility are hard because data model is complex – can be
done in SUMMER.

• Created a pipeline for U5MR using DHS data and SUMMER (Wu et al.,
2021).

• survey package now has a generic sae module.

• Most recently, developed a shinyApp that has successfully used at WHO
and UNICEF remote and online workshops – internet based app with all
computation done in the cloud; > 150 indicators in the app, and more
being added all the time.
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Country Engagement

Countries who have already been exposed to the shinyApp, either through
collaborations or workshops, in-person or remote:

• Benin

• Burkina Faso

• Central African Republic

• Côte d’Ivoire

• Democratic Republic of the Congo

• Guinea-Bissau

• Kenya

• Nigeria

• Rwanda

• Senegal

• Sierra Leone

• United Republic of Tanzania

• Zambia
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Models for Urban/Rural Stratification
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Acknowledging the Design: Stratification
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Figure 17: In the DHS in Rwanda,
stratification is based on provinces
and urban/rural.

• Suppose we are
interested in the
proportion of women aged
20–29 who complete
secondary education.

• The prevalence of secondary education is
higher in urban areas than in rural.

• If we oversample urban areas but ignore
this when we analyze the data we will
overestimate the prevalence of women
who complete secondary education,
i.e., we will introduce bias.

• Taking into account of the stratification
also reduces the variance of the
estimator.

• In the design-based approach to
inference, the stratification is accounted
for via design weights.

• In the model-based approach to
inference, the stratification is accounted
for in the mean model.
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Sampling Frame Summaries

Figure 18: Number of EAs (clusters) in the sampling frame (2008 census) used in the
2015 DHS. 46



Sampled Clusters Summaries

Figure 19: Number of EAs (clusters) in the sample, for the DHS 2015.
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Comparison of Urban Cluster Fractions in Sampling Frame and Sample

Figure 20: Proportions of clusters urban in the sample versus in the sampling frame.

48



Overview of Modeling

Bias will result under the following two conditions:

• The sampling of clusters is such that the urban/rural ratio differs from the
sampling frame.

• The response is associated with urban/rural.

If this holds we need to model the association, and weight the urban/rural
prevalances appropriately.

Prevalence Unit-Level
Model

Urban/Rural
Classification Model

Aggregation
Model
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Unit-Level Prevalence Model with Stratification

Unit-level model:

Yic |pic ∼ BetaBinomial(nic , pic , d)

pic = expit
(
αruralI(c ∈ rural) + αurbanI(c ∈ urban) + δi

)
where

• d is the scale parameter.

• exp(αrural) and exp(αurban) are the associations with rural and urban
(odds parameters).

• δi is an area-level spatial (BYM2) random effect.

The area-level prevalence in area i is:

pi = Pr(response|rural, i)× Pr(rural|i) + Pr(response|urban, i)× Pr(urban|i)

= expit(αrural + δi)× ri + expit(αurban + δi)× (1 − ri)

where ri is the fraction rural of the relevant population and needs estimating.
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The Sampling Frame: How to Estimate the Fraction Urban

• In the DHS, we have 2 urban/rural strata which we label as A and B, so
as to remove the complex connection with “true” urban and rural
classification over time – conceptually it is easiest to think of this as a
geographical partition of clusters.

• In a model-based approach, we need to adjust for A and B when the
outcome depends on A/B and the survey did unequal sampling with
respect to A and B.

• The definition and allocation of A and B clusters occurs at the time of the
census (which is the sampling frame), say at t = 0.

• The A and B cluster map is formed whenever the sampling frame is
formed, and is constant over time (just as the weights are).

• However, the populations in those areas do change over time.

• In a perfect world, we would have access to all clusters in the sampling
frame, along with the relevant populations in these clusters.
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Methods for Estimating the Urban/Rural Fractions

1. From the DHS manual, use the proportion of households in each area
(usually not available at Admin-2).

2. From the DHS manual, use the proportion of clusters in each area
(usually not available at Admin-2).

3. Estimate of urban/rural relevant population using DHS.

4. Classification algorithms:

• logistic regression,
• machine learning prediction algorithms (regression trees, super learner,...).
• Adjust for jittering?

5. Census proportions.

Details in Wu and Wakefield (2024).
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Covariates
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Figure 21: Log nighttime lights and log population density.
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Classification Surfaces
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Figure 22: Probabilistic classification (left) and binary classification (right).
Classification via logistic regression.
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Admin-1 Urban Fractions
Admin1 urban fractions for U5 population
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Figure 23: Admin-1 urban fractions from GBT corrected classification in 2015.
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Figure 24: Malawi district-level prevalence estimates from two unit-level models. On
the y-axis, the prevalence estimates are from a model with no urban/rural adjustment,
while on the x-axis the model has an adjustment.

The estimates from the no adjustment model are too high because of the
oversampling of urban areas, which have higher HIV prevalence.
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Summary and Discussion
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Summary

• If direct estimates have acceptable precision, then they are highly
recommended as reliable!

• If we can calculate direct estimates and their CVs, but the latter are
deemed too large, then we should turn to area-level (Fay-Herriot)
models.

• If area-level models result in insufficient precision, or the data are too
sparse too produce the required inputs to an area-level model (point
estimate and standard error), then we can turn to unit-level models.

• Unit-level models should be used with caution.

Details on methods, videos, latest updates, and much more can be found at:

https://sae4health.stat.uw.edu/
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Discussion: Two Approaches to Spatial Smoothing

• Traditional SAE
approaches introduce
random effects at the area
level. The discrete spatial
model (BYM2) is
implemented in the
shinyApp.

• An alternative is to model
at the point level using a
continuous spatial model
(as right).

• Beware of spurious
geographic detail and
precision.

If using continuous models, in addition to acknowledging the design, one
must also perform aggregation with respect to population density, which can
introduce extra bias and noise – not yet ready for prime time in the shinyApp. 59



Discussion

• Overshrinkage a worry: nested spatial models being investigated.

• Model checking still in infancy: we use cross-validation to predict
weighted estimates.

• Machine learning approaches are very intoxicating, but can the
uncertainty be quantified?

• Benchmarking to known totals is less popular in LMICs because the
population information may be inaccurate of out of data, see (Okonek
and Wakefield, 2022) for references to the benchmarking literature.

• Fay-Herriot variance modeling can be carried out to increase the utlity of
this method (Gao and Wakefield, 2023).

60



Next Steps for the App

• Have started a collaboration to allow MICS data to be analyzed.

• Covariates/auxiliary data to improve prediction.

• Nested spatial models.

• Expand the indicator list, including U5MR and IMR.

• Model checking diagnostics.

• Guidelines for which of weighted, area-level, unit-level, all fail, needed.

• Adding more graphics (including ranking plots).

• Continuous spatial models.

• Prevalences to Counts using WorldPop estimates.

• More training materials.

• Feedback and suggestions essential!
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